A nonuniform Littlewood–Offord inequality for all norms
نویسندگان
چکیده
Let vi be vectors in Rd and {εi} independent Rademacher random variables. Then the Littlewood–Offord problem entails finding best upper bound for supx∈RdP(∑εivi=x). Generalizing uniform bounds of Littlewood–Offord, Erdős Kleitman, a recent result Dzindzalieta Juškevičius provides non-uniform that is optimal its dependence on ‖x‖2. In this short note, we provide simple alternative proof their result. Furthermore, our demonstrates applies to any norm Rd, not just ℓ2 norm. This resolves conjecture Juškevičius.
منابع مشابه
a cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولNorms of Inequality
This paper investigates the linkage between social norms and wage dispersion between many industrialised countries. It examines social perceptions to legitimate differences between high and low paid occupations, and uses regression analysis to attribute causes for such differing social structures. The paper concludes that there exists a relationship between levels of inequality and the social s...
متن کاملAll-Norms and All-L_p-Norms Approximation Algorithms
In many optimization problems, a solution can be viewed as ascribing a “cost” to each client, and the goal is to optimize some aggregation of the per-client costs. We often optimize some Lp-norm (or some other symmetric convex function or norm) of the vector of costs—though different applications may suggest different norms to use. Ideally, we could obtain a solution that optimizes several norm...
متن کاملInequality for p-norms of positive matrices
This paper derives an inequality relating the p-norm of a positive 2×2 block matrix to the p-norm of the 2×2 matrix obtained by replacing each block by its p-norm. The inequality had been known for integer values of p, so the main contribution here is the extension to all values p ≥ 1. In a special case the result reproduces Hanner’s inequality. As an application in quantum information theory, ...
متن کاملKahane-Khinchin’s inequality for quasi-norms
We extend the recent results of R. Lata la and O. Guédon about equivalence of Lq-norms of logconcave random variables (KahaneKhinchin’s inequality) to the quasi-convex case. We construct examples of quasi-convex bodies Kn ⊂ IRn which demonstrate that this equivalence fails for uniformly distributed vector on Kn (recall that the uniformly distributed vector on a convex body is logconcave). Our e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2021
ISSN: ['1872-681X', '0012-365X']
DOI: https://doi.org/10.1016/j.disc.2021.112366